Applications of Learning Classifier Systems

Applications of Learning Classifier Systems

4.11 - 1251 ratings - Source

The field called Learning Classifier Systems is populated with romantics. Why shouldn't it be possible for computer programs to adapt, learn, and develop while interacting with their environments? In particular, why not systems that, like organic populations, contain competing, perhaps cooperating, entities evolving together? John Holland was one of the earliest scientists with this vision, at a time when so-called artificial intelligence was in its infancy and mainly concerned with preprogrammed systems that didn't learn. that, like organisms, had sensors, took Instead, Holland envisaged systems actions, and had rich self-generated internal structure and processing. In so doing he foresaw and his work prefigured such present day domains as reinforcement learning and embedded agents that are now displacing the older qstandard Af' . One focus was what Holland called qclassifier systemsq: sets of competing rule like qclassifiersq, each a hypothesis as to how best to react to some aspect of the environment--or to another rule. The system embracing such a rule qpopu lationq would explore its available actions and responses, rewarding and rating the active rules accordingly. Then qgoodq classifiers would be selected and re produced, mutated and even crossed, a la Darwin and genetics, steadily and reliably increasing the system's ability to cope.Schwager, J. D.: Technical Analysis, John Wiley aamp; Sons (1995) 35. Schulenburg, S., Ross, P.: An Adaptive ... Armano, G., Murru, A., Roli, F.: Stock Market Prediction by a Mixture of Genetic-Neural Experts. Int. Journal of Pattern Recognition andanbsp;...

Title:Applications of Learning Classifier Systems
Author:Larry Bull
Publisher:Springer - 2012-08-13


You Must CONTINUE and create a free account to access unlimited downloads & streaming