This definitive introduction to finite element methods was thoroughly updated for this 2007 third edition, which features important material for both research and application of the finite element method. The discussion of saddle-point problems is a highlight of the book and has been elaborated to include many more nonstandard applications. The chapter on applications in elasticity now contains a complete discussion of locking phenomena. The numerical solution of elliptic partial differential equations is an important application of finite elements and the author discusses this subject comprehensively. These equations are treated as variational problems for which the Sobolev spaces are the right framework. Graduate students who do not necessarily have any particular background in differential equations, but require an introduction to finite element methods will find this text invaluable. Specifically, the chapter on finite elements in solid mechanics provides a bridge between mathematics and engineering.for every triangle 7}- of a shape-regular triangulation 7/?. To this end, choose a reference triangle (5.11) with f = 2aquot;1/2 and p = (2 + V2)aquot;1 agt; 2/7. Now let F : rref a agt; r with T = Tj E Th- Applying Lemma 6.2 on the reference triangle and using the anbsp;...

Title | : | Finite Elements |

Author | : | Dietrich Braess |

Publisher | : | Cambridge University Press - 2007-04-12 |

Continue