The Moscow Mathematical Olympiad has been challenging high school students with stimulating, original problems of different degrees of difficulty for over 75 years. The problems are nonstandard; solving them takes wit, thinking outside the box, and, sometimes, hours of contemplation. Some are within the reach of most mathematically competent high school students, while others are difficult even for a mathematics professor. Many mathematically inclined students have found that tackling these problems, or even just reading their solutions, is a great way to develop mathematical insight. In 2006 the Moscow Center for Continuous Mathematical Education began publishing a collection of problems from the Moscow Mathematical Olympiads, providing for each an answer (and sometimes a hint) as well as one or more detailed solutions. This volume represents the years 1993-1999. The problems and the accompanying material are well suited for math circles. They are also appropriate for problem-solving classes and practice for regional and national mathematics competitions. In the interest of fostering a greater awareness and appreciation of mathematics and its connections to other disciplines and everyday life, MSRI and the AMS are publishing books in the Mathematical Circles Library series as a service to young people, their parents and teachers, and the mathematics profession. Titles in this series are co-published with the Mathematical Sciences Research Institute (MSRI).An analogous problem on the plane is known: A beetle crawls inside a triangle with sides a, b, c. What is the shortest length of a path that visits each side and returns to the initial point? It the case of an acute triangle the answer is the pathanbsp;...

Title | : | Moscow Mathematical Olympiads, 1993-1999 |

Author | : | Roman Mikhaĭlovich Fedorov |

Publisher | : | American Mathematical Soc. - 2011 |

Continue