Pattern Recognition and Classification

Pattern Recognition and Classification

4.11 - 1251 ratings - Source

The use of pattern recognition and classification is fundamental to many of the automated electronic systems in use today. However, despite the existence of a number of notable books in the field, the subject remains very challenging, especially for the beginner. Pattern Recognition and Classification presents a comprehensive introduction to the core concepts involved in automated pattern recognition. It is designed to be accessible to newcomers from varied backgrounds, but it will also be useful to researchers and professionals in image and signal processing and analysis, and in computer vision. Fundamental concepts of supervised and unsupervised classification are presented in an informal, rather than axiomatic, treatment so that the reader can quickly acquire the necessary background for applying the concepts to real problems. More advanced topics, such as semi-supervised classification, combining clustering algorithms and relevance feedback are addressed in the later chapters. This book is suitable for undergraduates and graduates studying pattern recognition and machine learning.2. Divide the training set into mutually exclusive and equal-sized subsets and for each subset, train the classifier on the union of all ... Densities Known Unknown Supervised Learning Unsupervised Learning Bayes Decision 18 2 Classification.

Title:Pattern Recognition and Classification
Author:Geoff Dougherty
Publisher:Springer Science & Business Media - 2012-10-28


You Must CONTINUE and create a free account to access unlimited downloads & streaming